Early experiences with the Ion Torrent

(How fickle is the Ion Trickle?)

Dr Torsten Seemann
Victorian Bioinformatics Consortium, Monash University

Dr Tim Stinear
Dept. Microbiology & Immunology, Melbourne University

VLSCI Capacity Building Meeting - Fri 29 July 2011
What is "Ion Torrent"?

- Another next-generation DNA sequencing instrument
 - PGM - "Personal Genome Machine"
The chip up close

A scanning electron micrograph of a large array of 1.3 μm wells
Chip specifications

<table>
<thead>
<tr>
<th>Chip</th>
<th>Nominal Yield</th>
<th>Typical Yield (on good day)</th>
<th>Read length</th>
<th>Current cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>312</td>
<td>1 Mbp</td>
<td>3 Mbp</td>
<td>~100</td>
<td>n/a</td>
</tr>
<tr>
<td>314</td>
<td>10 Mbp</td>
<td>25 Mbp</td>
<td>~100</td>
<td>$100</td>
</tr>
<tr>
<td>316</td>
<td>100 Mbp</td>
<td>220 Mbp</td>
<td>>100</td>
<td>$600</td>
</tr>
<tr>
<td>318</td>
<td>1 Gbp</td>
<td>?</td>
<td>~200 ?</td>
<td>?</td>
</tr>
<tr>
<td>320</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
Assessing output sequence

- **Yield**
 - The total number bp of sequence
- **Count**
 - How many reads there were
- **Length**
 - The distribution of read lengths: mode, mean, ...
- **Quality**
 - The distribution of quality scores across the read
- And then the same *after* quality filtering and trimming
 - the actual usable/useful/trustworthy sequence!
Phred qualities

● Base quality is reported as:
 ○ a "Q" value (also known as a "phred" quality)
 ○ encoded in FASTQ files using a single ASCII character

● Represents the estimated probability of error:
 ○ \(Q = -10 \log_{10} P \)
 ○ \(P = 10 ^ {(-Q/10)} \)

<table>
<thead>
<tr>
<th>Phred Quality Score</th>
<th>Probability of incorrect base call</th>
<th>Base call accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1 in 10</td>
<td>90 %</td>
</tr>
<tr>
<td>20</td>
<td>1 in 100</td>
<td>99 %</td>
</tr>
<tr>
<td>30</td>
<td>1 in 1000</td>
<td>99.9 %</td>
</tr>
<tr>
<td>40</td>
<td>1 in 10000</td>
<td>99.99 %</td>
</tr>
<tr>
<td>50</td>
<td>1 in 100000</td>
<td>99.999 %</td>
</tr>
</tbody>
</table>
The 10Mb chip - Yield

- Ion Torrent data release
 - 49 Mb for control E.coli K-12 DH10B (0.5M reads)

- IMB (Brisbane, AU)
 - typically got 20-30 Mbp (human PCR + bacteria)

- Uni. Birmingham (UK)
 - typically got ~25 Mbp too (bacteria)

- Melbourne Uni (AU)
 - Bad days: 2, 4, 3, 1, 3, 4 Mb :-(
 - Good days: 31, 26, 31, 60, 30, 31 Mbp :-(
The 10Mb chip - Length

- This is before filtering!
 - the mode of 125bp will end up about 100bp post-filtering
 - the 190bp peak is homopolymer gumpf
The 10Mb chip - Quality

- Quality profile is similar to 454 and Illumina
 - poor at 3’ end of the read
 - 5’ is pretty good, but this is the *E. coli* post-filtered
 - Q10 means 1 in 10 chance of error!
The 100Mp chip - Yield

- IMB Brisbane (AU)
 - Beta customer
 - Getting about ~220 Mb per run (cancer + bacteria)

- Uni. Birmingham (UK)
 - Run 1 - 251 Mb
 - Run 2 - 209 Mb

Melbourne Uni
 - Not available yet
The 100Mb chip - Length

- Mode ~ 125 bp but will be ~100bp after trimming
The 100Mb chip - Quality
Analysis - read mapping

● Need to use an aligner that:
 ○ handles multiple indels properly
 ○ works with un-paired reads

● Recommendations:
 ○ Work: TMAP, SHRiMP, BFAST, CLC
 ○ Might work: BWA, NovoAlign
 ○ Probably won't work: MAQ

● Nesoni
 ○ Our bacterial swiss-army knife tool inc. SNP calling
 ○ Seems to work fine with Ion data
 ■ uses SHRiMP v2 under the hood for alignment
Analysis - *De novo* assembly

- Very similar to original Roche GS20 data
 - ~100bp length single end reads
 - homopolymer errors
 - quality issues at read ends

- Software that "works"
 - Newbler (as Ion uses .SFF flowgrams too)
 - CLC Genomics Workbench (V4, maybe not V3)
 - Mira (author has tweaked it to handle PGM data)

- Results
 - not very good, need longer reads + paired-end protocol
Applications - pooled PCR products

• Verification of SNPs called from high(er) throughput data

• Previously, per SNP:
 ○ design oligoes around site
 ○ generate a PCR product
 ○ capillary sequence (Sanger) the PCR

• Now, pooled:
 ○ design oligoes
 ○ generate all PCR products and pool
 ○ Ion Torrent together
 ○ de novo assemble the result
 ○ get a contig for each PCR product!
The costs

- **Hardware**
 - $100k for PGM, Dell server, iPod Touch
 - $30k for oneTouch etc. (simpler lab prep)
 - $100-$800 per chip (excludes labour)
 - $5k+ for another workstation to do analysis on

- **Software**
 - $0 - comes with some basic mapping tools
 - $0 - open source Unix tools available
 - $5k - CLC Genomics Workbench

- **Wages**
 - $??k pa - cover time of your lab research assistant
 - $100k pa - bioinformatician in your lab
Conclusions

● Will democratize sequencing
● Well suited to microbial labs (due to lower yield)
● Applications in pathology

● Needs a mate-pair protocol
● Will need a multiplexing protocol

● Will be challenged by Illumina's MiSeq (Oct 2011?)
● Will be challenged by PacBio and others
References

- Nick Loman's blog
 - http://pathogenomics.bham.ac.uk/blog/

- Official paper

- Ion Torrent website:
 - http://www.iontorrent.com/