Cleaning Illumina reads

Torsten Seemann

ARC CoE in Coral Reef Studies - Magnetic Island - 7 Mar 2011
Outline

1. About the VBC
2. Motivation for cleaning
3. Cleaning steps
4. Let's clean a read together!
5. Results
6. Conclusions
Victorian Bioinformatics Consortium

- Monash University
 - Faculty of Medicine, Nursing & Health Sciences
 - School of Biomedical Sciences
 - Victorian Bioinformatics Consortium (VBC)

- Bacterial pathogenomics
 - antibiotic resistance (hospital and community)
 - large comparative genomics (100s of strains)
 - software tools for high throughput sequencing

- Worked on assembly and annotation of first bacteria fully sequenced in Australia - *Leptospira borgpetersenii*
Where is the VBC?

VBC in Melbourne

You are here
VBC Collaborators

- Monash University
 - ARC CoE - Structural & Functional Microbial Genomics
 - Depts: Microbiology, Physiology, Computer Science, ...

- National
 - Universities: UniMelb, UWA, U.Syd, UQ, IMB
 - CSIRO: AAHL, FNS, Livestock Industries, Dairy CRC
 - ARC CoE - Coral Reef Studies / JCU

- International
 - USDA, TIGR (now JCVI), Pasteur Institut, EBI/EMBL
 - Universities: Copenhagen, UC Davis, UCSD

- Consulting
 - Biota, Merck, DPI Victoria
Illumina short reads

- **Length**
 - 35 to 150bp, typically 100bp today
- **Attributes**
 - High quality at 5' start, lowers toward 3' end
 - Indels & homopolymer run errors are rare
- **"Single end"**
 - Just a shotgun read sequenced from one end
- **"Paired end"**
 - Typically 250-500bp fragments sequenced at both ends
 - Very reliable
- **"Mate pair"**
 - Circularized 2-10 kbp fragments, paired sequencing
 - Variable reliability
Why clean reads?

● Erroneous data may cause software to:
 ○ run more slowly
 ○ use more RAM
 ○ produce poor / biased / incorrect results

● Cleaning can:
 ○ improve overall average quality of the reads
 ■ hopefully giving a better result
 ○ reduce the volume of reads
 ■ some algorithms are $O(N \cdot \log N)$ or $O(N^2)$
 ■ enable processing when otherwise couldn't

● (some software does handle them appropriately)
The FASTQ format

Combines the sequence and quality into a 4 line record:

@HWUSI-EAS-100R:6:1:9646:1115#GATCAG/1
GGACCTGAGAGTGTGCATGAAGAGGGCAGCCCTCGCGCACCGCTG
+
HWUSI-EAS-100R:6:1:9646:1115#GATCAG/1
ccf^_cdf_d^dddddafaaf\^a_a_fff]dd[dya^]]daBBBB

1. @ Machine : Lane : Tile : X : Y # Mux / Direction
2. DNA sequence
3. + [copy of 1.]
4. Quality string (encoded, see next slide)
FASTQ quality string

- Encodes Phred qualities (Q) between 0 and 40
 - Q = 10 \log_{10} p \quad (higher \ is \ better)
 - p = estimated probability that the base call is incorrect

- Uses 41 "readable" characters
 - ASCII 64 '@' to 104 'h'
 - "B"=BAD "s"=satisfactory "g"=good "h"=high
 - Beware there are 3 other alternate encodings :-(
Ambiguous bases

● If there is ambiguity in the base call, an "N" is used

@ILLUMINA:6:1:964:115#GATCAG/1
GGACCTGAGAGTGTGCATGAAGGGCAGCGCGCACNGCA
+
ccf^_cdf_d^ddddddfaaf\^a_a_fff]dd[dyPFBBB

● Possible software responses:
 ○ Crash!
 ○ Ignore it
 ○ Silently convert to fixed or random base (Velvet)
 ○ Handle it appropriately

● Small proportion overall, safer to discard
Homopolymers

- A read consisting of all the same base

@ILLUMINA:6:1:964:115#GATCAG/1
AA
+
ccf^_cdf_d^ddddfafaaf\^a_a_ff]d[dYPFDEDCBBBBB

- Often occur from clusters at edge of flowcell lane
- Early Illumina software called 'blank' as 'A'
- Unlikely to be present in real DNA
- Best to discard
Quality trimming

● Remove low quality sequence
 ○ Q=13 corresponds to 5% error (p=0.05)
 ○ Q=0..13 encoded by @ABCDEFGHIJKLMNOPQRSTUVWXYZ

@ILLUMINA:6:1:9646:1115#GATCAG/1
GACCTGAGAGTGTGCAAGAGAGCCAGCCCAGCCACTGCATG
+
cdf^_cdf_d^dddddfaf\^a_a_fff]ddPFDEDCBBBBBB

● Can trim per
 ○ each base
 ○ window moving average eg. 3 base mean
 ○ minimum % good per window eg. need 4 of 5
Illumina Adaptors

- Used in the sequencing chemistry
- Can appear at ends of read sequences
- Worse for mate-pair than for paired-end reads

- PCR Primer
 CAAGCAGAAGACGGCATACGAGCTCTTCCGATCT

- Genomic DNA Sequencing Primer
 CACTCTTTTCCCTACACGACGCTCTTCCGATCT

- TruSeq Universal Adaptor (newest chemistry)
 "CENSORED"
Adaptor clipping

● Method
 ○ Align 3' and 5' read end against all adaptor sequences
 ○ If there is an anchored "match", trim the read

● Minimum length of match?
 ○ want to remove adaptor, but not real sequence [10 bp]

● Allow substitutions in match?
 ○ as reads have errors, need some tolerance [1 sub]

● Allow gaps/indels in match?
 ○ indels are unlikely in Illumina reads [no]

● Slow to perform compared to other pre-processing steps
Decloning

- Illumina "mate pair" sequencing
 - Requires a lot of starting DNA
 - Challenging protocol to implement reliably
 - Not enough final DNA leads to PCR clones
 - Coverage is highly non-uniform and sporadic
 - Causes bias in analyses

- Decloning
 - Replace clones with a single representative
 - Choose representative with highest quality
 - Helps salvage usable information content
 - Implemented by Sylvain Foret
Read length

● Enforce a minimum read length L

● Choice is dependent on software
 ○ Short read assemblers eg, Velvet
 ■ Break reads into k-mers, so $L < k$ is pointless
 ○ Aligning reads to reference eg. BWA, Maq
 ■ Desire reasonable uniqueness of sequence
 ■ $L=24+$ is bare minimum
Walk-through

1. Original read + quality = 43bp
 GTTAGCGCGCTGACCATGATTCAAGGAAC TTGGCC CCATTNATA
 hhhhhghfeefaa^a^[[[^X[[XX^^^` SSTQPZZBBBBBBB
2. Homopolymer? No
 GTTAGCGCGCTGACCATGATTCAAGGAAC TTGGCC CCATTNATA
3. Ambiguous N bases? Yes, 1
 GTTAGCGCGCTGACCATGATTCAAGGAAC TTGGCC CCATTNATA
4. Quality < 20 ? Yes, at 3’ end
 GTTAGCGCGCTGACCATGATTCAAGGAAC TTGGCC CCATTNATA
5. Adaptor sequences > 8bp ? Yes, 9 bp at 5’ end
 GTTAGCGCGCTGACCATGATTCAAGGAAC TTGGCC CCATTNATA
6. Combine all masks Logical intersection
 GTTAGCGCGCTGACCATGATTCAAGGAAC TTGGCC CCATTNATA
7. Extract longest sub-sequence = 19bp
 TGACCATGATTCAAGGAAC
Example

- **Raw data** (*A. millepora* Illumina)
 - 9 libraries - 3 x PE, 6 x MP - 200bp to 10kbp
 - 92.0 Gbp, 943M reads, average length 98bp

- **Method**
 - Decloned all MP libs, disallow Ns, reject homopolymers, trim Q < 20 + clip adaptors, minimum length 55bp

- **Cleaned data**
 - 42.5 Gbp, 478M reads, average length 88bp

- **Effect**
 - Good - *de novo* Velvet assembly improved overall
 - Bad - lower coverage
Per library yields (Gbp)

<table>
<thead>
<tr>
<th>Library</th>
<th>Raw</th>
<th>Cleaned</th>
<th>%Kept</th>
</tr>
</thead>
<tbody>
<tr>
<td>pe_193</td>
<td>9.55</td>
<td>6.71</td>
<td>70</td>
</tr>
<tr>
<td>pe_463</td>
<td>19.19</td>
<td>13.89</td>
<td>72</td>
</tr>
<tr>
<td>pe_580</td>
<td>4.87</td>
<td>3.18</td>
<td>65</td>
</tr>
<tr>
<td>mp_2200</td>
<td>18.48</td>
<td>8.48</td>
<td>46</td>
</tr>
<tr>
<td>mp_2820</td>
<td>13.54</td>
<td>1.54</td>
<td>11</td>
</tr>
<tr>
<td>mp_4628</td>
<td>12.95</td>
<td>0.85</td>
<td>6</td>
</tr>
<tr>
<td>mp_5000</td>
<td>6.92</td>
<td>2.98</td>
<td>43</td>
</tr>
<tr>
<td>mp_8000</td>
<td>4.33</td>
<td>1.64</td>
<td>38</td>
</tr>
<tr>
<td>mp_10000</td>
<td>2.15</td>
<td>0.25</td>
<td>11</td>
</tr>
<tr>
<td>single</td>
<td>n/a</td>
<td>3.00</td>
<td>n/a</td>
</tr>
<tr>
<td>TOTAL</td>
<td>92.00</td>
<td>42.50</td>
<td></td>
</tr>
</tbody>
</table>
Summary

GARBAGE IN, GARBAGE OUT!
Acknowledgements

● ARC CoE - Coral Reef Studies
 ○ Sylvain Foret
 ○ David Miller
 ○ Janet Swanson

● VBC
 ○ Paul Harrison

● Family
 ○ Naomi, Oskar, Zoe
Contact

● Email
 torsten.seemann@monash.edu

● Web
 http://bioinformatics.net.au/

● GoogleChat
 torsten.seemann